Curvature variation minimizing cubic Hermite interpolants

نویسندگان

  • Gasper Jaklic
  • Emil Zagar
چکیده

In this paper, planar parametric Hermite cubic interpolants with small curvature variation are studied. By minimization of an appropriate approximate functional, it is shown that a unique solution of the interpolation problem exists, and has a nice geometric interpretation. The best solution of such a problem is a quadratic geometric interpolant. The optimal approximation order 4 of the solution is confirmed. The approach is combined with strain energy minimization in order to obtain G cubic interpolatory spline.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonnegativity-, Monotonicity-, or Convexity-Preserving Cubic and Quintic Hermite Interpolation*

The Hermite polynomials are simple, effective interpolants of discrete data. These interpolants can preserve local positivity, monotonicity, and convexity of the data if we restrict their derivatives to satisfy constraints at the data points. This paper describes the conditions that must be satisfied for cubic and quintic Hermite interpolants to preserve these properties when they exist in the ...

متن کامل

C1 Hermite interpolation with spatial Pythagorean-hodograph cubic biarcs

In this paper the C Hermite interpolation problem by spatial Pythagorean-hodograph cubic biarcs is presented and a general algorithm to construct such interpolants is described. Each PH cubic segment interpolates C data at one point and they are then joined together with a C continuity at some unknown common point sharing some unknown tangent vector. Biarcs are expressed in a closed form with t...

متن کامل

Geometric Hermite Curves Based on Curvature Variation Minimization

Based on the smoothness criterion of minimum curvature variation of the curve, tangent angle constraints guaranteeing an optimized geometric Hermite (OGH) curve both mathematically and geometrically smooth is given, and new methods for constructing composite optimized geometric Hermite (COH) curves are presented in this paper. The comparison of the new methods with Yong and Cheng’s methods base...

متن کامل

An Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves

In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters w...

متن کامل

Multivariate refinable Hermite interpolant

We introduce a general definition of refinable Hermite interpolants and investigate their general properties. We also study a notion of symmetry of these refinable interpolants. Results and ideas from the extensive theory of general refinement equations are applied to obtain results on refinable Hermite interpolants. The theory developed here is constructive and yields an easyto-use constructio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 218  شماره 

صفحات  -

تاریخ انتشار 2011